Add Row
Add Element
cropper
update

[Company Name]

Agility Engineers
update
Add Element
  • Home
  • Categories
    • SAFe
    • Agile
    • DevOps
    • Product Management
    • LeSS
    • Scaling Frameworks
    • Scrum Masters
    • Product Owners
    • Developers
    • Testing
    • Agile Roles
    • Agile Testing
    • SRE
    • OKRs
    • Agile Coaching
    • OCM
    • Transformations
    • Agile Training
    • Cultural Foundations
    • Case Studies
    • Metrics That Matter
    • Agile-DevOps Synergy
    • Leadership Spotlights
    • Team Playbooks
    • Agile - vs - Traditional
Welcome To Our Blog!
Click Subscribe To Get Access To The Industries Latest Tips, Trends And Special Offers.
  • All Posts
  • Agile Training
  • SAFe
  • Agile
  • DevOps
  • Product Management
  • Agile Roles
  • Agile Testing
  • SRE
  • OKRs
  • Agile Coaching
  • OCM
  • Transformations
  • Testing
  • Developers
  • Product Owners
  • Scrum Masters
  • Scaling Frameworks
  • LeSS
  • Cultural Foundations
  • Case Studies
  • Metrics That Matter
  • Agile-DevOps Synergy
  • Leadership Spotlights
  • Team Playbooks
  • Agile - vs - Traditional
March 08.2025
3 Minutes Read

Why APM Alone Cannot Meet the Demands of Modern DevOps: The Rise of IPM

Hands typing on laptop illustrating Internet Performance Monitoring.

The Paradigm Shift in Application Monitoring

In an era where digital transformation is accelerating rapidly, the limitations of Application Performance Monitoring (APM) tools have become increasingly evident. Originally designed to manage traditional application architecture, APM systems struggle to keep pace with today’s dynamic environments where cloud computing and distributed services reign supreme. This scenario necessitates new approaches to monitoring that ensure comprehensive visibility across the multitude of services utilized—enter Internet Performance Monitoring (IPM).

Why APM is Insufficient in Today’s Internet Infrastructure

We live in a world where cloud technologies aren't just supplemental—they are core to operations. With applications hosted in multiple data centers and dependencies spread across various services, organizations find themselves facing complexity like never before. APM tools, once suitable for monolithic applications operating on local area networks, now hinder more than help. They focus primarily on application code, leaving organizations blind to external internet factors that impact user experiences.

Understanding Internet Performance Monitoring (IPM)

IPM emerges as a comprehensive solution designed to fill this gap. Unlike APM—which targets code-level performance—IPM emphasizes overall network performance as experienced by users. By leveraging strategies such as real user monitoring (RUM) and synthetic testing from multiple vantage points around the globe, IPM solutions, like those offered by Catchpoint, allow organizations to analyze how internet infrastructures and services influence application performance.

As highlighted in various industry reports, only IPM can bridge the gaps left by APM. It empowers organizations to understand latency variations, unearth root causes of user experience issues, and provide real insights into application performance from the user's perspective. This level of insight is crucial today as businesses depend on a wide variety of internet-facing services, APIs, and third-party solutions to achieve their operational goals.

A New Monitoring Paradigm: Blending APM and IPM

It's important to note that APM is not entirely obsolete; rather, it works exceptionally well in concert with IPM. This combination can yield the robust monitoring strategies organizations need to thrive in today’s intricate digital landscape. For instance, while APM offers insights into application efficiencies, IPM ensures that those efficiencies translate into a satisfactory user experience by measuring real-world internet interactions.

Consider a company like SAP, which utilizes Catchpoint for its Commerce Cloud and APM for its application stack. They ensure user experiences are optimized not just by the performance of their application but by the entirety of their internet stack.

The Future of Monitoring: Skills for Tomorrow’s Network Engineers

As organizations evolve from traditional infrastructures towards Internet-centric approaches, so too must the skill sets of their network engineers. No longer can they rely solely on routers and switches; proficiency with IPM tools is essential for today’s engineering professionals. Companies like Catchpoint have identified this need and are fostering training initiatives to equip engineers with the necessary skills for this transition.

Take Action: Embrace IPM for a Resilient Future

In conclusion, the digital landscape demands that organizations adopt innovative monitoring strategies to ensure optimal user experiences. By embracing both APM and IPM, entities not only enhance operational resilience but also align their IT efforts with user expectations. The call to action is clear: organizations must explore integrated monitoring solutions, such as IPM, in order to stay ahead of performance challenges, improve digital experiences, and ultimately drive business success.

Agile-DevOps Synergy

67 Views

0 Comments

Write A Comment

*
*
Related Posts All Posts
01.24.2026

Growing AI Investments Redefining Software Development Through DevOps

Update AI Investments Surge: Why Now Is the Time to Pay Attention The latest survey from Futurum Group reveals an upward trend in investments aimed at integrating artificial intelligence (AI) within software delivery processes. With organizations increasingly adopting AI technologies, understanding this shift is critical for both tech firms and business stakeholders. By leveraging AI, companies are not only improving operational efficiencies but also enhancing their competitive edge in a rapidly evolving market. The Impacts of AI on Software Development As businesses adapt to the demands of Agile and DevOps methodologies, incorporating AI is seen as a natural evolution. This integration aids in streamlining workflows, allowing teams to accelerate delivery while maintaining high-quality standards. With AI tools taking on repetitive tasks, development teams can focus their efforts on innovation and strategic projects, resulting in faster deployment times. Trends in Agile DevOps: A Closer Look Futurum's survey highlights a noteworthy trend—businesses are shifting budgets to AI-driven solutions under Agile DevOps frameworks. These frameworks promote iterative development and allow teams to pivot quickly in response to user feedback. By infusing AI into the development life cycle, organizations can harness data-driven insights that enhance decision-making, reduce errors, and improve product outcomes. Security at the Forefront: The Role of DevSecOps Alongside accelerated development, security remains a paramount concern. The rise of DevSecOps—a methodology integrating security practices within the DevOps process—is gaining traction. AI can bolster security measures by predicting vulnerabilities and automating compliance checks, ultimately safeguarding applications against breaches. Future Predictions: AI's Growing Stake in Strategy Looking ahead, AI's role in software development is expected to expand further. Analysts predict that as more companies recognize the value of AI, investments will only continue to rise. According to experts, integrating AI isn’t just a trend; it’s becoming a necessary component for future survival in the tech landscape. Final Thoughts: Navigating the Future of AI in Tech The shifting landscape marked by increased investments in AI underlines a critical pivot in the tech industry. As organizations embrace these changes, understanding and adapting to these trends will be essential for ongoing success. Embracing AI technologies allows companies not only to remain competitive but also to lead innovation across the board. In conclusion, companies must stay informed about these developments in AI and Agile DevOps to remain ahead of the curve. By recognizing the growing role AI plays, stakeholders can strategically position themselves to leverage technology for maximum impact.

01.24.2026

Apple's AI-Powered Pin: What This Wearable Technology Could Mean

Update Apple's Entry into Wearable AI: A Game-Changer? Apple is gearing up to join the wearable AI market with a cutting-edge device that resembles a pin—a shift that could redefine our interaction with technology. The reported AI-powered wearable pin, comparable in size to an AirTag, features dual cameras, microphones, and a speaker. Despite excitement over its innovative specifications, key questions about its utility and privacy implications remain unanswered. Why Now? The Timing of Apple's AI Pin As the tech landscape becomes increasingly competitive, Apple appears ready to stake its claim in the wearable AI space—a sector already fraught with challenges. Industry players like Humane faced backlash over technical failures with their own AI pins, and now the pressure is on Apple to deliver a flawless product. Launching in a sensitive environment might not only be about innovation but also about demonstrating accountability to consumers wary of privacy invasions. Can Apple match its solid reputation for data security with this new gadget? Diving Deeper: What Does This Pin Do? While the exact function of the pin remains somewhat ambiguous, reports indicate it may serve as an "eyes and ears" companion for Siri. Imagine a pin that responds to your voice, capturing your surroundings while respecting your privacy. Nonetheless, the silence surrounding its practical use raises concerns. Without a compelling reason for consumers to adopt such a device, it risks becoming another tech gimmick. Market Analysis: Learning from Competitors Apple isn't the only tech giant moving into this territory. Meta offers AI-enhanced Ray-Ban smart glasses while Amazon explores wearable devices like the Bee bracelet. Apple's entry could stir more interest in AI wearables, but public reluctance following recent AI failures might hinder initial enthusiasm. With a crowded marketplace, Apple must ensure that its pin not only innovates but also addresses safety and utility. Privacy Matters: The Bigger Picture The incorporation of cameras and microphones into a pin-like device raises significant privacy concerns. Consumers may be hesitant to embrace technology that feels invasive, especially one that could monitor their interactions unknowingly. Apple has built its brand around user data protection—how they navigate perceptions surrounding privacy will be crucial. Key questions linger: How will data be safeguarded? When will the device record? Proper transparency will be essential for consumer trust. Eyes on the Future: Potential Launch If the development survives the typical hurdles faced by tech startups, the Apple pin might see its debut at an upcoming Worldwide Developers Conference. Yet, given the current climate and history of tech failures, Apple may need to tread carefully. Industry analysts suggest that friendly interactions with early adopters and transparency about data use could secure the pin's place in consumers' hearts. In conclusion, Apple's attempt to tap into the wearable AI market introduces both excitement and apprehension. As the world awaits more details, users will benefit from staying informed, particularly about the pressing topic of privacy. This emerging technology not only shapes consumer habits but might fundamentally redefine interaction with our environment. Are you ready to embrace the AI pin, or will privacy concerns hold you back?

01.23.2026

AI-Driven Quality Assurance: Why It’s Essential for Modern Software Testing

Update AI-Driven Quality Assurance: The Future of Software Testing As artificial intelligence (AI) continues to evolve, it is reshaping the landscape of software testing and quality assurance (QA) like never before. In a recent discussion with Fitz Nowlan, the vice president of AI and architecture at SmartBear, he highlighted the rising importance of stronger QA practices in managing the burgeoning complexities of AI-generated code. Understanding the Shifting Terrain of Software Development The speed and scale at which AI-driven development operates introduce significant risks; more code is produced faster, leading to greater susceptibility to defects and failures. Traditional QA methods simply can't keep pace with the exponential rate of change that AI brings to the software lifecycle. This scenario necessitates a renaissance in how organizations approach testing and quality assurance. The Rise of AI-Powered QA: Efficiency Meets Reliability Fitz Nowlan advocates for a decisive shift toward AI-powered QA processes. This approach uses automation to enhance testing effectiveness, covering gaps that traditional manual processes cannot address. As organizations adopt this modernized QA landscape, they will find that AI can improve test case generation through techniques like natural language processing (NLP) and predictive analytics. Tools equipped with these capabilities allow for seamless transitions from requirement gathering to automated test execution. The Advantages of Integrating AI in QA Processes One of the key advantages of AI-driven quality assurance is the reduction of human error. Manual testing can be labor-intensive, time-consuming, and prone to inconsistencies. In contrast, AI systems can standardize processes, ensuring consistency across multiple testing scenarios. This leads to more accurate outcomes and significantly reduces the time needed to deliver software to market. Beyond Code: The Scope of QA Validation The essence of AI-powered QA transcends mere defect detection. It aims to validate the operational signals of software, including system behavior and performance metrics like latency. Nowlan emphasizes the necessity of separating the frameworks used for coding from those used in testing. This is crucial not only for maintaining code quality but also for ensuring that the performance aligns with user expectations. Future Insights: Vibe Coding and Citizen Development Looking ahead, we must prepare for a world of 'vibe coding' where testers and developers work in closer synergy. In this new environment, non-technical users—referred to as citizen developers—will play an essential role in generating prompts and specifications that enhance software quality. This collaborative effort is prime for refining the standards by which we measure software integrity. Practical Tips To Thrive in the AI-Enhanced QA Landscape Organizations looking to capitalize on AI in their QA processes should start by embracing autonomous testing methods. Here are a few actionable steps they can take: Invest in AI Training: Equip QA teams with the skills needed to leverage AI effectively. Integrate AI Tools: Adopt platforms that facilitate automated test case generation and defect detection. Emphasize Continuous Learning: Use machine learning to adapt testing strategies and processes over time. Conclusion: Building a Resilient Future in Software Testing The necessity of robust QA practices in an AI-driven era cannot be overstated. The imperative is clear: organizations must double down on testing to mitigate the inherent risks associated with AI-generated code. By doing so, they not only improve product reliability but also position themselves for success in a competitive market. As industries continue transforming, organizations must gear up for the exciting possibilities that AI presents. Call to Action: Start investing in AI-powered QA tools and strategies today to ensure your organization stays ahead of the curve in the ever-evolving software landscape!

Terms of Service

Privacy Policy

Core Modal Title

Sorry, no results found

You Might Find These Articles Interesting

T
Please Check Your Email
We Will Be Following Up Shortly
*
*
*