Add Row
Add Element
cropper
update

[Company Name]

Agility Engineers
update
Add Element
  • Home
  • Categories
    • SAFe
    • Agile
    • DevOps
    • Product Management
    • LeSS
    • Scaling Frameworks
    • Scrum Masters
    • Product Owners
    • Developers
    • Testing
    • Agile Roles
    • Agile Testing
    • SRE
    • OKRs
    • Agile Coaching
    • OCM
    • Transformations
    • Agile Training
    • Cultural Foundations
    • Case Studies
    • Metrics That Matter
    • Agile-DevOps Synergy
    • Leadership Spotlights
    • Team Playbooks
    • Agile - vs - Traditional
Welcome To Our Blog!
Click Subscribe To Get Access To The Industries Latest Tips, Trends And Special Offers.
  • All Posts
  • Agile Training
  • SAFe
  • Agile
  • DevOps
  • Product Management
  • Agile Roles
  • Agile Testing
  • SRE
  • OKRs
  • Agile Coaching
  • OCM
  • Transformations
  • Testing
  • Developers
  • Product Owners
  • Scrum Masters
  • Scaling Frameworks
  • LeSS
  • Cultural Foundations
  • Case Studies
  • Metrics That Matter
  • Agile-DevOps Synergy
  • Leadership Spotlights
  • Team Playbooks
  • Agile - vs - Traditional
March 22.2025
3 Minutes Read

The Evolution of DAST: Why Dynamic Testing is More Crucial Than Ever

DAST Evolution concept with digital shield and binary code.

The State of Dynamic Application Security Testing in 2023

Dynamic Application Security Testing (DAST) has been a pillar in the realm of application security for years, yet today, many experts argue that it's broken. It's not that DAST has outlived its utility; rather, it requires a transformative evolution to better address the complexities of modern applications. With rapid advancements in technology, traditional DAST methods are often ill-equipped to manage the dynamic and intricate nature of contemporary software environments.

The Challenges Facing DAST

In a world that increasingly embraces DevOps and Agile methodologies, DAST's limitations become glaringly apparent. The shift towards continuous integration and delivery involves frequent changes and iterations, which can overwhelm traditional DAST tools that are often seen as too slow and reactive. As companies race to deploy software faster, the need for timely security assessments has never been more critical. This fast-paced environment has sparked conversations across the industry about how DAST must innovate—not abandon—its principles to remain relevant.

Integrating DAST with Agile and DevSecOps

For DAST to evolve, integration with Agile DevOps practices is essential. Companies that adopt a DevSecOps approach prioritize security at every stage of the development cycle. This means implementing security testing, including DAST, earlier in the software development lifecycle (SDLC). When teams embrace shared responsibilities involving security in every sprint, they can more effectively address vulnerabilities as they arise, rather than fixing them post-deployment. This shift not only enhances security but also builds a culture of collaboration within agile teams.

Real-World Examples of DAST Evolution

Many organizations are already adapting their security testing strategies to reflect these changes. For instance, a leading financial institution recently revamped its DAST processes by integrating automated security scanners into its CI/CD pipelines. As a result, they reduced deployment times significantly while ensuring that security assessments remained robust and continually updated. Such examples highlight that DAST is not dead; it simply requires a fresh lens through which to view application security.

Future Trends: The Path Forward for DAST

Looking ahead, the future of DAST will likely align closely with the burgeoning trends in AI and machine learning. These technologies can enhance DAST tools by allowing them to predict and respond to security threats more effectively. Moreover, with the growing influence of cloud-native architectures, DAST solutions that accommodate microservices and containers will become indispensable. As organizations adapt their infrastructures to fit these evolving frameworks, DAST must also transform to keep pace.

Counterarguments: Why DAST Can't Stand Still

Despite the rationale for evolving DAST, some professionals argue that the foundation of DAST still holds value. They maintain that traditional DAST tools can still function adequately when coupled with robust manual testing practices. However, while acknowledging this viewpoint is essential, it is equally crucial to recognize that without evolution, DAST risks obsolescence in an industry that continually demands more agility and speed.

Conclusion: Make a Move Towards Evolving Security Practices

DAST's role in the realm of application security isn't over; it's on the brink of transformation. As teams increasingly embrace Agile and DevSecOps methodologies, they must also consider recalibrating their security strategies to integrate evolving testing practices efficiently. For teams still relying on outdated DAST methods, the time to move towards more adaptive and forward-thinking solutions has arrived.

By investing in the evolution of DAST and integrating it into Agile practices, companies can not only secure their applications more effectively but also foster a more security-conscious culture. As you consider your own application security strategies, reflect on how you can leverage the evolving landscape of DAST to ensure your applications remain both innovative and secure.

Agile-DevOps Synergy

48 Views

0 Comments

Write A Comment

*
*
Related Posts All Posts
11.20.2025

AI Agents Promising to Transform DevOps Workflows for Enhanced Efficiency

Update The Rise of AI Agents in DevOps In recent years, the field of DevOps has undergone significant transformation, with AI playing a pivotal role in modern workflows. As organizations strive for efficiency and rapid innovation, the deployment of AI agents becomes essential. These autonomous software components intelligently manage tasks, adapting to changing situations and automating repetitive processes, freeing up valuable human resources for higher-level strategic work. Understanding AI Agents and Their Benefits AI agents are more than just simple scripts; they are sophisticated systems that can monitor, analyze, and respond to operational challenges in real time. By leveraging data and contextual awareness, these agents execute defined tasks autonomously, significantly enhancing the DevOps landscape. The integration of such agents helps to: Improve Response Times: With capabilities to detect and remediate issues within seconds, organizations can reduce downtime and enhance customer satisfaction. Enhance Consistency: By adhering to standardized procedures, AI agents minimize variability introduced by human intervention, promoting reliability across deployments. Reduce Engineering Overheads: By automating mundane tasks, engineers can redirect their focus towards innovation and more strategic initiatives. Transformative Use Cases for AI Agents in DevOps The real-world application of AI agents is diverse. Some notable use cases include: Incident Management: AI agents can autonomously manage incidents by diagnosing issues, correlating them with recent changes, and taking corrective action without human input. Resource Optimization: These agents analyze resource usage patterns, dynamically adjusting resources according to demand, thereby ensuring cost-effectiveness. Continuous Delivery Processes: AI agents can be instrumental in validating deployments, ensuring that configurations align with predefined criteria, and halting releases that do not meet the standards. Challenges Ahead: Implementing AI in Current Frameworks While the benefits of AI agents in DevOps are clear, several challenges remain. Organizations often need to: Adopt New Tools: Selecting the right AI-enabled platforms that integrate smoothly with existing systems is crucial for successful implementation. Manage Cultural Resistance: Engaging teams and encouraging acceptance of AI within workflows can often be met with hesitation due to fears of job displacement. Establish Governance: As organizations transition to AI-driven operations, defining accountability and maintaining oversight of automated processes becomes necessary. Reliable audit trails and fallback mechanisms are essential to prevent oversights. Looking Ahead: Future of AI in DevOps The trajectory of AI in DevOps is set for rapid advancement. Companies that adopt AI agents now will not only improve operations but can also gain a competitive advantage by optimizing workflows and harnessing data-driven insights. As organizations look to future-proof their systems with more autonomy, the successful integration of AI agents will shape the next generation of DevOps practices. For teams navigating this evolving landscape, leveraging AI agents signifies not just an upgrade in technology, but a fundamental shift toward smarter, more resilient operational strategies. Organizations can streamline processes, improve incident response, and drive innovation, all while reshaping the roles of engineers to focus on creative, impactful work.

11.19.2025

Transform Your Workflow: Discover New Relic's AI-Powered Azure Integrations for Enhanced Observability

Update Revolutionizing Observability with AI IntegrationIn a groundbreaking move that promises to enhance developer productivity and streamline incident response, New Relic has rolled out a suite of AI-powered observability tools designed for integration with Microsoft Azure. This advancement comes as businesses rush to adopt AI workflows, necessitating efficient monitoring solutions to manage the ever-increasing complexity of their infrastructures.The backdrop of this development is a tech landscape witnessing a flurry of investment in AI infrastructure. Gartner projects global AI spending to surpass $2 trillion by 2026, signaling a pressing need for enterprises to ensure their AI systems are reliable and effective. As organizations adopt Agile methodologies and faster, DevOps-oriented workflows, integrating AI into observability processes becomes essential to maintain productivity amidst growing complexity.A New Age of Automation and InsightCentral to New Relic's latest innovation is the introduction of the AI Model Context Protocol (MCP) Server, which feeds real-time observability data directly into Azure’s Site Reliability (SRE) Agent and Microsoft Foundry. This integration eliminates the hassle of switching between platforms during critical troubleshooting sessions, allowing developers to address issues more swiftly during production incidents. New Relic’s Chief Product Officer, Brian Emerson, emphasizes that intelligent observability within workflows is vital to harnessing the full potential of AI-driven automation.Streamlined Incident ResponseThe integration automatically retrieves observability insights once New Relic triggers an alert or logs a deployment, effectively diagnosing issues across various services and applications. As Julia Liuson, President of Microsoft’s Developer Division, highlights, teams working on AI projects deserve a seamless workflow, receiving intelligent insights right where they work.Furthermore, New Relic has launched the Azure Autodiscovery feature, which maps service dependencies and overlays configuration changes onto performance graphs. This enhancement allows teams to quickly pinpoint root causes of performance issues by correlating infrastructure changes with telemetry data, turning hours of investigation into mere minutes.Bridging AI and Human InsightAI observability tools address a critical challenge—ensuring that automated systems have the necessary data to make informed decisions during incidents. Modern AI systems pull data from numerous sources, requiring robust monitoring to trace back errors swiftly. As outlined in a recent article spotlighting 17 best AI observability tools, gaining visibility into the performance and health of AI models is not just beneficial; it is essential. AI-powered anomaly detection, automated root-cause analysis, and real-time performance metrics make it easier for teams to navigate the complexity of their AI workloads.Future Trends in AI MonitoringLooking ahead, as AI systems continue to evolve from experimental models to foundational components of organizational strategy, reliable observability tools will play a crucial role in enabling organizations to scale confidently. The push for more integrated systems will likely lead DevOps and development teams to expect observability platforms that not only deliver insights but also act on them—highlighting the importance of proactive rather than reactive strategies in AI monitoring.Takeaway: The Value of Intelligent ObservabilityUnderstanding the significance of observability tools like those offered by New Relic provides both technical and operational advantages. As AI becomes a cornerstone of enterprise strategy, investing in tools that enhance observability ensures that organizations can maintain high-quality service delivery and rapid incident response. By leveraging these integrated solutions, development teams can reduce downtime, increase operational efficiency, and ultimately drive better business outcomes.

11.20.2025

Master the Art of Estimating Effort with Story Points in Agile

Update Understanding Story Points in Agile DevelopmentStory points are a critical yet often misunderstood concept in Agile project management. These units measure the effort, complexity, and uncertainty associated with completing a certain task—but they don't correspond to actual time intervals such as hours or days. Instead, story points facilitate a shared understanding among Agile teams about what it takes to complete a piece of work. Let’s delve into how effective story points can transform your Agile workflow.The Shift Away from Traditional Time EstimatesThe transition from rigid time estimates to story points arises from the common pitfalls that Agile teams encounter. Many developers face scenarios where their initial estimates of how long a feature will take become wildly inaccurate once they begin work. This misalignment can lead to frustration, underperformance, and tensions with stakeholders. The adoption of story points shifts focus from the question of "how long" to "how big"—encouraging teams to judge tasks based on their complexity and risk rather than predictable timelines.Collaborative Estimation: Planning Poker in PracticeA popular method for arriving at story point estimates is Planning Poker. In this engaging technique, team members use a set of cards displaying numbers (often based on the Fibonacci sequence) to represent their individual estimates for the complexity of tasks. When teams play Planning Poker, everyone participates in the estimation process, fostering collaboration across different roles—from developers to product owners and testers. Discussion of discrepancies in estimates can uncover invaluable insights into unseen complexities or risks associated with the task at hand.How to Avoid Common Mistakes with Story PointsMisuse of story points can undermine their intended purpose. Some Agile teams have mistakenly used them to gauge individual productivity, creating stress and competition among team members. This counterproductive approach detracts from the essential objective of Agile methodologies, which emphasizes collaboration and flexibility. To make the most out of story points, teams must stay clear of correlating story points directly with productivity metrics and instead use them for understanding the relative size of work items, thus facilitating better backlog prioritization.Learning from Past Estimates: Continual ImprovementAnother core principle of Agile is iterative improvement. After each sprint, teams should assess the accuracy of their estimates against the actual effort required for completion. This reflection allows teams to refine their estimation techniques continually, enhancing their velocity and predictability over time. Tools like Jira can assist in this retrospective analysis by offering tracking for completed story points, enabling teams to make data-driven adjustments to their estimating processes.Conclusion: Why Embrace Story Points?Adopting story points creates a framework that supports Agile principles effectively while accommodating the variability and complexities of software development. As teams shift to a more collaborative, relative estimation process, they empower themselves to make informed decisions that drive efficiency and foster a more inclusive team environment. Understanding these dynamics not only enhances project outcomes but also contributes to a more adaptable and progressive work culture. If you’re ready to dive deeper into Agile project management and improve your estimation practices, consider utilizing tools like Jira for more streamlined workflows.

Terms of Service

Privacy Policy

Core Modal Title

Sorry, no results found

You Might Find These Articles Interesting

T
Please Check Your Email
We Will Be Following Up Shortly
*
*
*